An Isoperimetric Inequality Involving Conformal Mapping

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Asymptotic Isoperimetric Inequality

For a finite metric space V with a metric ρ, let V n be the metric space in which the distance between (a1, . . . , an) and (b1, . . . , bn) is the sum ∑n i=1 ρ(ai, bi). We obtain an asymptotic formula for the logarithm of the maximum possible number of points in V n of distance at least d from a set of half the points of V , when n tends to infinity and d satisfies d √ n. 1 The Main Results Le...

متن کامل

An Application of the Isoperimetric Inequality to the Conformal Scalar Curvature Equation

We study the radial symmetry and asymptotic behavior of positive solutions of a certain class of nonlinear elliptic equations, a typical example of which is u = e jxj u2; x 2 IRn and jxj large ( ) where n 2. In particular we show each positive solution u(x) of ( ) satis es lim jxj!1[u(x) u(jxj)] = 0 where u(r) is the average of u on the sphere jxj = r. We also determine the asymptotic behavior ...

متن کامل

A Resistance Bound Via An Isoperimetric Inequality

An isoperimetric upper bound on the resistance is given. As a corollary we resolve two problems, regarding mean commute time on finite graphs and resistance on percolation clusters. Further conjectures are presented.

متن کامل

An Isoperimetric Inequality for the Heisenberg Groups

We show that the Heisenberg groups H 2n+1 of dimension ve and higher, considered as Rieman-nian manifolds, satisfy a quadratic isoperimetric inequality. (This means that each loop of length L bounds a disk of area L 2). This implies several important results about isoperimetric inequalities for discrete groups that act either on H 2n+1 or on complex hyperbolic space, and provides interesting ex...

متن کامل

An isoperimetric inequality for the Wiener sausage

Let (ξ(s))s≥0 be a standard Brownian motion in d ≥ 1 dimensions and let (Ds)s≥0 be a collection of open sets in R. For each s, let Bs be a ball centered at 0 with vol(Bs) = vol(Ds). We show that E[vol(∪s≤t(ξ(s) + Ds))] ≥ E[vol(∪s≤t(ξ(s) + Bs))], for all t. In particular, this implies that the expected volume of the Wiener sausage increases when a drift is added to the Brownian motion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1977

ISSN: 0002-9939

DOI: 10.2307/2041897